Applying Cognitive Semiotics to User Interface Design

Andrea Lee

Semiotics

- Study of creating and interpreting sign and symbols
- Signifier visual or auditory "token"
- Signifies concept being represented

Signs

- Signifier is a substitute for signified
- Language itself is made of signs
- Can be more abstract
- Icons specific connections

Symbols

- Signifier substituted by signified
- Color is often used as a symbol

Figure 1: The color red can me a symbol for warnings in interfaces

Cognitive Semiotics

- Applying Psychological Theory to semiotics
- Perception
- Memory
- Judgement

Graphic User Interfaces

- Four Components According to Yan (2020)
 - Window
 - Icons
 - Menu
 - Pointer

Figure 2: The graphic user interface of google slides

Creating Symbols

- Experiment by Fay et al. (2018) Participants created symbols for certain prompts
- Communication restricted by researchers
- Symbols communicated meaning more successfully with open communication.
- Became simpler with repetition.

Figure 3: Symbols created for "museum" from "How to Create Shared Symbols" by Fay et al., 2018, *Cognitive science*, *42*(S1). p. 244 https://doi.org/10.1111/cogs.12600

Applications

- Not every function will have an associated symbol
- Meaning will need to be communicated externally

Allow Imitation, Allow Feedback			P			P
Allow Imitation, No Feedback	間間間			F Coff		A 60°
Forbid Imitation, Allow Feedback		7.0 A		8 / ini		ζn
Forbid Imitation, No Feedback	7 Page 1		HOH W			11000
	Game 1	Game 2	Game 3	Game 4	Game 5	Game 6

Figure 4: Symbols created for "parlement" from "How to Create Shared Symbols" by Fay et al., 2018, *Cognitive science*, *42*(S1). p. 258 https://doi.org/10.1111/cogs.12600

Decision Making and Memory

- Martidou (2020) participants given choices between images
 - Did not remember every choice
- Users will not remember every decision they make
- May even hide suspected errors
 - Design time needs to show they are willing to admit to a flaw in design

TYPE OF DETECTION	TYPE OF RESPONSE	NUMBER OF RESPONSES (%)		
	Categorical	68 (21%)		
Clear	Conciliatory	37 (12%)		
	Retrospective	2 (1%)		
Possible	Uncertainty	46 (15%)		
	Ignorance	29 (9%)		
	Indifference	25 (8%)		
None	Acceptance	109 (34%)		

Figure 5: Recorded responses to being presented false choices from "Choice awareness and manipulation blindness: A cognitive semiotic exploration of choice-making" by Martidou, *Public Journal of Semiotics*, 9(1) p. 15

Layers of Design (Scolari 2009)

- Plastic
- Figurative
- Communicative
- Meta-Communicative

Plastic and Figurative

- Layout of interface Colors and Shapes
- Shows general importance of different elements
- Give contrast to important elements
- What colors are being used and for what purpose?

Communicative and Meta-Communicative

- Communicative Symbols and Icons
- Users need to understand what each symbol and icon means
- Meta communicative communication between users through interface
 - Not part of all designs.

SIDE – Semiotic Interface Design Evaluation (Islam et al 2020)

- Syntactic
- Pragmatic
- Social
- Environmental
- Semantic

Syntactic Level

- Layout of interface similar to plastic and figurative layers
- Emphasis on the users' level of control
 - What elements are interactable?

Pragmatic Level

- Symbols in relation to other symbols
 - Placement within layout
 - Differences in size
- "Internal logic" of interface

Figure 6: minimise, toggle full screen, and exit buttons from Google Chrome.

Social Level

- Cultural Meanings of Symbols
- Using symbols the user has already seen elsewhere

Figure 7: A simplified shopping cart is often used as an icon for a page containing users' potential purchases

Environmental Level

Symbols from users' professional background

Different programs in the same field may use the same symbols for the same

functions

Figure 8: Open file functions are often represented with a folder icon

Semantic Level

- Users' interpretations of the designers' reasoning.
- If users can guess why a symbols was used, they can guess the function as well.
- Intentions should be clear from previous layers

Design Frameworks as Evaluations

- Islam et al. conducted an experiment which compared a standard heuristic analysis with an analysis based on the SIDE framework.
- Analyses were tested and both government websites and mobile applications.
- Semiotic evaluation and Heuristic evaluation both found issues the other overlooked.
- A combination of both evaluations could be useful.

Figure 9: Percentages of issues discovered by Heuristic and Semiotic Evaluations from "Evaluating Web and Mobile User Interfaces With Semiotics: An Empirical Study" by Islam et al., *IEEE Access*, 8, p. 84408 doi: 10.1109/ACCESS.2020.2991840

Conclusion

- Promising results for evaluation techniques
- Frameworks for design should be based on user behavior
- More research is required

References

- 1. Abbott, M. B. (2002) On Definitions. *Journal of Hydroinformatics*, 4(2),i-xxvii https://doi.org/10.2166/hydro.2002.0007
- 2. Herrman, C. (2022) The Criteria Necessary to Achieve Formal Definitions of Sign and Symbol. *Eidos*, *6*(1), 97-121. DOI: 10.14394/eidos.jpc.2022.0008
- 3. Mouratidou, A. (2020) Choice Awareness and Manipulation Blindness: A Cognitive Semiotic Explanation of Choice Making. *Public Journal of Semiotics*, *9*(1). 1–40. https://doi.org/10.37693/pjos.2019.9.21388
- 4. Yan, R. (2011). Icon Design Study in Computer Interface. *Procedia Engineering*, *15*, 3134–3138. https://doi.org/10.1016/j.proeng.2011.08.588
- 5. Fay, N., Walker, B., Swoboda, N., & Garrod, S. (2018), How to Create Shared Symbols. *Cognitive Science*, 42(S1), 241-269 https://doi.org/10.1111/cogs.12600
- 6. Yan, W. (2020). Psychological Analysis of User Interface Design in Computer Software. *Journal of Physics:* Conference Series, 1533(2), 1-5. https://doi.org/10.1088/1742-6596/1533/2/022040
- 7. Scolari, C. (2009) The Sense of Interface: Applying Semiotics to HCI Research. Semiotica, 2009(117). 1-27 https://doi.org/10.1515/semi.2009.067
- 8. Islam M. N., Bouwman H., & Islam A. K. M. N. (2020) Evaluating Web and Mobile User Interfaces With Semiotics: An Empirical Study, *IEEE Access*, *8*, 84396-84414 doi: 10.1109/ACCESS.2020.2991840